Skip to content

Latest commit

 

History

History

072 - Edit Distance

72. Edit Distance share

Problem Statement:

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

Constraints:

  • 0 <= word1.length, word2.length <= 500
  • word1 and word2 consist of lowercase English letters.

Solution:

impl Solution {
    fn min_distance(word1: String, word2: String) -> i32 {
        let (m, n) = (word1.len(), word2.len());
        let (word1, word2) = (word1.as_bytes(), word2.as_bytes());
        let mut dp = vec![vec![0; n + 1]; m + 1];

        for i in 0..=m {
            for j in 0..=n {
                if i == 0 {
                    dp[i][j] = j as i32;
                } else if j == 0 {
                    dp[i][j] = i as i32;
                } else if word1[i - 1] == word2[j - 1] {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = 1 + dp[i - 1][j - 1].min(dp[i - 1][j].min(dp[i][j - 1]));
                }
            }
        }

        dp[m][n]
    }
}
#include <bits/stdc++.h>
using namespace std;

int minDistance(string word1, string word2)
{
  int m = word1.length(),
      n = word2.length();
  vector<vector<int>> dp(m + 1, vector<int>(n + 1));
  for (int i = 0; i < m + 1; i++)
    for (int j = 0; j < n + 1; j++)
    {
      if (i == 0)
        dp[i][j] = j;
      else if (j == 0)
        dp[i][j] = i;
      else if (word1[i - 1] == word2[j - 1])
        dp[i][j] = dp[i - 1][j - 1];
      else
        dp[i][j] = 1 + min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1]));
    }
  return dp[m][n];
}

// int main()
// {
//   cout << getMinConversions("intention", "execution") << endl;
// }
def minDistance(word1: str, word2: str) -> int:
    m, n = len(word1), len(word2)
    dp = [[None] * (n + 1) for _ in range(m + 1)]
    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0:
                dp[i][j] = j
            elif j == 0:
                dp[i][j] = i
            elif word1[i - 1] == word2[j - 1]:
                dp[i][j] = dp[i - 1][j - 1]
            else:
                dp[i][j] = 1 + min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1]))
    return dp[m][n]


if __name__ == "__main__":
    print(minDistance("intention", "execution"))
package main

func minDistance(word1 string, word2 string) int {
	m, n := len(word1), len(word2)

	dp := make([][]int, m+1)

	for i := 0; i <= m; i++ {
		dp[i] = make([]int, n+1)
	}

	for i := 0; i <= m; i++ {
		for j := 0; j <= n; j++ {
			if i == 0 {
				dp[i][j] = j
			} else if j == 0 {
				dp[i][j] = i
			} else if word1[i-1] == word2[j-1] {
				dp[i][j] = dp[i-1][j-1]
			} else {
				dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]))
			}
		}
	}

	return dp[m][n]
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}
public class EditDistance {

  /**
   * Time Complexity => O(n^2)
   *
   * @param str1 String
   * @param str2 String
   * @return the minimum number of operations required to convert {@code str1} to
   *         {@code str2}
   */
  public int minDistance(String word1, String word2) {
    int m = word1.length(),
        n = word2.length();
    int[][] dp = new int[m + 1][n + 1];
    for (int i = 0; i < m + 1; i++)
      for (int j = 0; j < n + 1; j++) {
        if (i == 0)
          dp[i][j] = j;
        else if (j == 0)
          dp[i][j] = i;
        else if (word1.charAt(i - 1) == word2.charAt(j - 1))
          dp[i][j] = dp[i - 1][j - 1];
        else
          dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
      }
    return dp[m][n];
  }

  public static void main(String[] args) {
    EditDistance ob = new EditDistance();
    System.out.println(ob.minDistance("intention", "execution"));
  }
}