A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. A divisor of an integer x
is an integer that can divide x
evenly.
Given an integer n
, return true
if n
is a perfect number, otherwise return false
.
Example 1:
Input: num = 28
Output: true
Explanation: 28 = 1 + 2 + 4 + 7 + 14
1, 2, 4, 7, and 14 are all divisors of 28.
Example 2:
Input: num = 7
Output: false
Constraints:
1 <= num <= 108
impl Solution {
pub fn check_perfect_number(num: i32) -> bool {
if num == 1 {
return false;
}
let (mut sum, mut i) = (1, 2);
while i * i <= num {
// if i is a factor of num, add i and num / i to sum
if num % i == 0 {
sum += i;
if i * i != num {
sum += num / i;
}
}
i += 1;
}
sum == num
}
}